

Shirshov Institute of Oceanology Russian Academy of Sciences

Understanding discrepancies in global ocean surface wave climate based on ERA5, MERRA2, ERA-I and CFSR hindcasts

Sharmar V., Markina M., Gulev S.

2nd International Workshop on Waves, Storm Surges and Coastal Hazards 2019 15 November 2019

Discrepancies-?

Atmospheric downscaling uncertainty Wave model uncertainties (inter-model, intra-model, inter-method)

GCM model's uncertainties (inter-scenario, inter-model, intra-model)

(COWCLIP nomenclature, Morim et.al, 2018)

Goals

- 1. To perform 4 hindcats based on modern reanalyses
- 2. To validate wind speeds and wave heights from hindcasts against satellite data
- 3. To analyze discrepancies between different hindcasts
- 4. To estimate global trends in wind speeds and wave heights from reanalyses and hindcasts

Methods

We performed 4 long-term (1980-2017) wind wave hindcasts based on <u>ERA5</u>, CFSR, <u>MERRA2</u>, ERA-Interim atmospheric reanalyses and analysed discrepancies between them.

WAVEWATCH III – third	generation spectral
wave model:	

- ST4 physics package
- Spectral resolution: 25 frequencies, 24 directions
- DIA for non-linear wave interactions

Boundary conditions: 10-m winds and sea ice	Spatial resolution (lat x lon)
concentrations (6-hourly)	
ERA5 (ECMWF)	0.25° × 0.25°
ERA-Interim (ECMWF)	0.7° × 0.7°
NCEP CFSR (v2)	0.312° × 0.312°
MERRA2 (NASA)	0.5° × 0.625°

Validation of hindcasts against altimeter data (Jason1)

Climatology of wind speed in 1980-2017

- ERA5 < CFSR in the equatorial region</p>
- ERA5 > MERRA2 in the tropical regions
- ERA5 and ERA-Interim give the closest mean wind speeds

Extreme wind speeds in 1980-2017

- ERA5 < CFSR both in the equatorial region and in the mid-latitudes
- ERA5 > MERRA2 overall
- ERA5 the closest to ERA-i

Wind speed: zonal mean and error histograms

Wind speed: zonal mean and error histograms

Wind speed: zonal mean and error histograms

Wind speed, [ms⁻¹]

Wind speed, $[ms^{-1}]$

Climatology of wave height in 1980-2017

- ERA5-WW3 < CFSR-WW3 in winter of the correspondent hemisphere
- ERA5-WW3 > MERRA2-WW3 overall
- ERA5-WW3 < ERAi-WW3 in the SH mid-latitudes</p>

Extreme wave height in 1980-2017

- ERA5-WW3 < CFSR-WW3</p>
- ERA5 > MERRA2 overall, except the mid-latitudes of NH in DJF
- ERA5-WW3 the closest to ERAi-WW3

Wave height: zonal mean and error histograms

Wave height: zonal mean and error histograms

Wave height: zonal mean and error histograms

Regional analysis

Central Atlantic Ocean (CAO)

Histograms and box diagrams in Central Atlantic in DJF

Trends in mean wind speed and wave height in 1980-2017 (JJA)

1980 1985 1990 1995 2000 2005 2010 2015

Trends in mean wind speed and wave height in 1980-2017 (DJF)

Conclusions

- Four global long-term wind wave hindcasts have been created (MERRA2 was used for the first time)
- The largest discrepancies in wind speeds in the tropical regions and in wave heights in the extratropical areas (MERRA2 < ERA5 < CFSR)
- Positive trends in wind speed in North Atlantic and equatorial Pacific, Indian Oceans. Negative trends in Caribbean and Arabian Seas and Bay of Bengal.
- Trends in waves are consistent with winds, only with larger spatial coverage

Normalized bias between reanalyses/hindcasts against altimeter (Jason1)

 $NBIAS = \left[\left(\overline{h} - \overline{m} \right) / \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(m_{i} \right)^{2}} \right] \times 100$

10-m winds according to reanalyses

e.

10°5

30*5

Wave heights according to hindcasts

-10

Connection between the wave field variability and wind field EOF 1

EOF 1

e. PC 1

